S-PARK

AUTOMATIC ROAD BARRIER

User manual
INDEX

1. WARNING 4

2. TECHNICAL FEATURES 4
 2.1 Main features 4
 2.2 Life line 4
 2.3 Electronics 5

3. INSTALLATION 6
 3.1 Introduction 6
 3.2 Preliminary checks 6
 3.3 General layout 6
 3.4 Basement preparation 6
 3.5 Fixing the barrier on ground 7
 3.6 Balancing of the boom 7
 3.6.1 Right hand and Left hand mounting 7
 3.6.2 Mounting of the boom 7
 3.6.3 Manual operation 8
 3.6.4 Limit switches 9
 3.6.5 Mounting and adjusting of the spring 9
 3.6.6 Balancing (boom in unlocked mode) 10
 3.6.7 Photocells RF40 10
 3.6.8 Led strip 10
 3.6.9 Boom accessories 11
 3.6.10 Mirror barriers (TWINNING) 11
 3.7 Wirings 11
 3.7.1 Main power 230V 11
 3.7.2 Back-up batteries 11
 3.7.3 Stand-alone antenna (optional) 12
 3.7.4 Wiring diagram 12
 3.8 Legenda of terminals 13
 3.8.1 START – wired command contacts (key switch, key pad, timer) 13
 3.8.2 STOP – emergency push button or similar devices 13
 3.8.3 STRT2 (optional additional START contact) 13
 3.8.4 PH – Closing photocell (N.C. dry contact) 13
 3.8.5 +24 (SAFETY) Closing photocell (power) 13
 3.8.6 +TX - Closing photocell (photocell test) 13
 3.8.7 LD (Loop Detector) 13
 3.8.8 +24, R, G and B (BOOM) LED signalling strip 13
 3.8.9 DAT and GND (TWINNING) 13
 3.8.10 AUX – Relay output 13
 3.9 Quickstart guide 14
 3.10 Locking the upper top cover 14

4. OPERATION 14
 4.1 Working cycle 14
 4.1.1 LED strip signalling mode - legenda 14
 4.1.2 Automatic closing after power cut 14
 4.1.3 Programming keys 15
5. **PROGRAMMING**

5.1 Settings' configuration
5.2 Settings' list
5.3 Setting's description

5.3.1 A. RADIO
 A.1 Store a remote control as START command
 A.2 Store a remote control as START2 command

5.3.2 C. PROGRAMMING
 C.1 Boom automatic learning
 C.3 Reset (factory default)
 C.4 LH and RH boom configuration
 C.5 Working logic configuration

5.3.3 F. TORQUE
 F.1 Obstacle detection

5.3.4 H. SPECIAL FUNCTIONS
 H.1 Pre-blinking in closing
 H.2 Fixed-light blinker
 H.3 “Follow me” closing
 H.4 Automatic closing after power cut
 H.6 Master/slave barrier configuration

5.3.5 L. WORKING TIMES
 L.1 Automatic closing
 L.2 Automatic closing (pedestrian opening)

5.3.6 P. SAFETY
 P.1 STOP
 P.2 PH (closing photocell)
 P.3 LD loop detector
 P.4 LED signalling strip (optional)
 P.5 Light sensor
 P.6 Cabinet’s safety switch

5.3.7 U. MAINTENANCE
 U.1 Overall cycles performed
 U.3 Maintenance countdown
 U.4 Maintenance recall
 U.5 Installation date

6. **DISPLAY**

6.1 Messages
6.2 Faults

7. **MAINTENANCE**

7.1 Manual operation double check

8. **END USER’S TIPS**

8.1 Warnings
8.2 Boom manual release
8.3 Maintenance
8.4 Disposal
1. WARNING

This manual for S-Park series contains important information concerning personal safety. An incorrect installation or an improper use may lead to severe injuries. Read carefully and pay particular attention to the safety sections marked by the yellow triangle.

- S-PARK series is projected to control transit areas; if necessary, provide a special and separate entry way for pedestrians.
- The installation of automatic doors, gates and barriers must comply with the Machinery Directive 2006/42/CE and EN 12453 regulation, and performed by qualified personnel.
- Make sure the main power line is equipped with state of the art safety grounding system; as well be sure the whole installation is protected by a power cut switch and against overcurrent.
- Make sure the area is clear from flammable gases and/or electromagnetic interferences: it could lead to very dangerous injuries.
- Switch the power and batteries OFF before any operation.

After installation, packaging and waste materials (cardboard, plastic, metal parts etc.) must be kept away from children as they could be potentially harmful.

Use only original spare parts. Any alteration to the system is prohibited. Proteco Srl will not respond in case of using additional and/or fake spares.

Before commissioning the system, deliver the last pages of this manual to the user (section 8. END USER’S TIPS starting from page 21).

Proteco S.r.l. reserves the right to make changes to the product without notice.

2. TECHNICAL FEATURES

2.1 Main features

<table>
<thead>
<tr>
<th>Feature</th>
<th>S-PARK 4</th>
<th>S-PARK 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main power</td>
<td>230V 50/60 Hz</td>
<td>230V 50/60 Hz</td>
</tr>
<tr>
<td>Max. absorption</td>
<td>1,2A @ 230V</td>
<td>1,2A @ 230V</td>
</tr>
<tr>
<td>Motor power</td>
<td>24V dc</td>
<td>24V dc</td>
</tr>
<tr>
<td>Accessories</td>
<td>24V dc</td>
<td>24V dc</td>
</tr>
<tr>
<td>Torque</td>
<td>120 Nm</td>
<td>180 Nm</td>
</tr>
<tr>
<td>Opening time</td>
<td>2.5 ÷ 4 sec.</td>
<td>4.5 ÷ 6 sec.</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-25°C ÷ +55°C</td>
<td>-25°C ÷ +55°C</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>IP rating</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

2.2 Life line

The life of the barrier may be affected by multiple waste factors. The life expectation can be calculated using the following criteria.

In order to get the barrier waste rate refer to the information included in Table 1, add together all values that comply with the installation scenario along with the accessories installed.

The result achieved will be a value between 0 and 10, and it represents the waste rate to be applied on the below graph to calculate the estimated life rate.

ATTENTION: If the waste rate obtained is beyond 10, move to a superior barrier version in order to fulfill the expected performances.

<table>
<thead>
<tr>
<th>Feature</th>
<th>S-Park 4</th>
<th>S-Park 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom from 3 to 4 m length</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Boom from 5 to 6 m length</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Photocell operation frequently cut</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Normal operation frequently cut due to obstacle</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Seaside areas</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Sandy and dusty areas</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Significantly windy areas</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Articulated boom</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Boom fitted with moving support</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Boom fitted with hanging rack</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Boom fitted with led strip</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Outside temperatures often beyond 40° or below 0°</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Follow the waste rate line on the bottom of the graph to get the estimated duty cycles.

The duty cycles obtained may be compromised if the maintenance plan is not carefully respected.

Duty cycles are determined on the base of design analysis, project calculations and tests carried out at factory. Therefore the duty cycles achieved are a mere estimation.

2.3 Electronics

<table>
<thead>
<tr>
<th>START commands</th>
<th>START, START2 (pedestrian opening), STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>433 MHz embedded radio receiver, storage up to 96 random or rolling codes</td>
</tr>
<tr>
<td>Safety devices</td>
<td>Closing photocell, loop detector (configurable)</td>
</tr>
<tr>
<td>Additional appliances</td>
<td>TWINNING (mirror barriers), timer, light sensor</td>
</tr>
<tr>
<td>Outputs</td>
<td>RGB led signalling strip, AUX output</td>
</tr>
<tr>
<td>Optional interfaces</td>
<td>Expansion connector for optional modules, Connector for home automation usb key / APP</td>
</tr>
<tr>
<td>Main functions</td>
<td>Operation mode, Obstacle detection, Follow me closing, Startup automatic closing, Pre-blinking, Maintenance countdown, Maintenance alert, Installation date</td>
</tr>
</tbody>
</table>
3. INSTALLATION

3.1 Introduction
For a proper installation, strictly follow the following procedure, respecting the below chronological order:

- Prepare a strong basement using ferro concrete.
- Fix the cabinet to ground.
- Fit the boom and accessories.
- Adjust and balance the spring.
- Proceed to self-learning programming and adjust settings.

Additional information:

- TWINNING function, it allows to manage two mirror barriers.
- RGB led singnalling strip available to complete the boom.
- Photocells and similar safety obstacle detection devices can be fitted.

3.2 Preliminary checks
Before proceeding to installation, it is necessary to double check the good condition of every component of the barrier and make sure the site is suitable for installation purposes.

- All components must be integral and suitable to use.
- Make sure the installation site complies with system's dimensions.
- Make sure the concrete basement grants stability and solidity.
- Make sure the area around the barrier is clear enough to allow easy and safe manual operation.

3.3 General layout
As shown in the below plan view, a safety clearance of 500 mm all around the barrier area has been left. While the boom length can be adjusted, the concrete basement remains fixed as it is built (Picture 2).

3.4 Basement preparation
It is absolutely key to build a solid concrete basement (at least EN206 C25/30 proof).

Basement dimensions must be no less than 400x500mm and no less than 600mm deep. We recommend to consider an extra concrete surface of 200 mm all around the basement. (Picture 3)

Pay attention while arising the basement, since the concrete work cannot impede to stud the fixing screws.

Do not forget wirings!

While preparing the concrete basement keep a duct of the proper dimension to connect the main power and any possible additional devices.
3.5 Fixing the barrier on ground

Remove washers and bolts M10 screwed on ground plate, lay the cabinet on the concrete basement and match protruding anchor screws to slots of cabinet floor. (Picture 6)

Use flat washers M10, grover washers and bolts M10 provided to fix the cabinet to the ground plate. Keep the barrier’s door facing inside the property.

3.6 Balancing of the boom

3.6.1 Right hand and Left hand mounting

The barrier is available in one single version and can switch from right to left hand and viceversa. Once the barrier hand is determined, proceed to fit the spring accordingly as shown in the above picture. If you need to change the opening orientation, complete the installation first and then follow the instructions rotating to 90° the equalizer lever before repositioning the boom and spring. ATTENTION: FOR SAFETY REASONS REMOVE THE BOOM JUST WHEN IN VERTICAL POSITION

3.6.2 Mounting of the boom

After determining the closing orientation, if necessary cut the boom according to the length needed. We recommend to fit the cut side of the boom to the fixing plate. Fix the bracket to the barrier plate: leave screws a bit loose, in order to make the boom insertion as easy as possible. Fit the boom inside the bracket and screw the 4 sets of washers and screws M10. (Picture 9)
Adjust the rubber profile a bit shorter than the boom’s length (about 19 cm shorter). (Picture 10)

Fit the rubber profile into the according compartment inside the boom’s frame, and lead it till the end, then adjust leaving a gap of 1 cm. (Picture 10/11)

Now fit the rubber profile cap and fix it with silicone.

Then proceed to fit the boom cap and fix it with the provided self-threading 3.5x32 mm screw, refer to Picture 12.

Finally, fix the anti-shearing cover with the two M5 screws supplied, using the two inserts on the bracket. (Picture 13)

ATTENTION:

3.6.3 Manual operation
In order to facilitate adjustments, balancing, spring and limit switch regulation, put the barrier in manual operation mode.

Put the barrier to manual operation mode just after completing the whole installation. Be careful when releasing the boom, it could accidentally lift up and be dangerous.

Use the lock located on the right side of the cabinet.

Turn the key anticlockwise to release the handle.

Rotate the handle clockwise all the stroke long to unlock the barrier: now it is possible to manually move the boom.

Turn counterclockwise the handle until the two symbols of locked padlock are in line.

Finally, turn the key of the lock clockwise to lock the handle, and remove the key from the barrel.

The barrier is provided with one key set to manage both the lock and cabinet’s door.
3.6.4 Limit switches

In order to adjust the stroke of the boom, open the cabinet door, unlock the automation as explained above and use the two threaded pins on the "V" reinforcement positioned above the gearbox.

Turn the two pins clockwise / counterclockwise to increase or decrease the stroke of the boom and evaluate the most correct position according to the inclination of the ground where the barrier will be fitted.

![Picture 17](image1)

3.6.5 Mounting and adjusting of the spring

Before proceeding to balancing, make sure the spring is fitted to the proper hole, considering the boom weight and length and possible accessories, as outlined in Table 2.

There are three different springs (A/B/C) that can be matched to three different holes (1/2/3). Example: if matching all the data you get as result A3, it means spring A (MM010) fitted to hole 3.

Looking at the equalizer lever you will find 3 holes on the right side and 3 holes on the left side. If the boom closes to the right side, use the holes on the left side of the equalizer lever and vice versa.

![Picture 18](image2)

Table 2: Guideline to matching of spring and equalizer lever hole

<table>
<thead>
<tr>
<th>BOOM FEATURES</th>
<th>2-3m</th>
<th>3-4m</th>
<th>4-5m</th>
<th>5-6m</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOM (integrated with rubber profile)</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>BOOM + LED STRIP</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>BOOM + MOVING SUPPORT</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>BOOM + HANGING RACK</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>BOOM+HANGING RACK+MOVING SUPPORT</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>ARTICULATED BOOM</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BOOM + LED STRIP + MOVING SUPPORT</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>BOOM + LED STRIP + HANGING RACK</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>BOOM + LED STRIP + HANGING RACK + MOVING SUPPORT</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>ARTICULATED BOOM + LED STRIP</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

![Picture 20](image3)

ATTENTION: The barrier's plate is provided with two fixing points, on the left and right side. Make sure spring is hooked to the proper fixing point according to the barrier's hand.

- Make sure the barrier is unlocked and put the boom to vertical position.
- Lock it again.
- Drive the M12 hexagonal screw through the spring hole, and put a washer as spacer. The screw’s head must be oriented as shown Picture 18.
- Fit the spring to the equalizer lever, using the proper hole. Put a washer in order to facilitate rotation.
- Tighten bolt and washer M12.

- Use the hook to secure the spring to barrier's plate, as shown Picture 19.

Table 2:

- BH12 holes
- RH12 holes
- EQUALIZER LEVER LAYOUT
- LH12 holes
- RH12 holes
- LIMIT SWITCHES
- EQUALIZER LEVER

Legenda of springs

MMO10	A
MMO11	B
MMO12	C

WASHER M12

SCREW TE 12X45

BOLT M12

JOINT M12

THREADED BAR M12

TRIGGER M8

HOOK
3.6.6 Balancing (boom in unlocked mode)

ATTENTION: IT IS MANDATORY TO PROCEED TO BALANCING BEFORE ACTIVATING THE BARRIER, IN ORDER TO AVOID INCORRECT OPERATION. Balancing must be performed just after completing the whole barrier installation. Unlock the barrier as previously outlined (Refer to chapter 3.6.3 Manual operation, p. 8).

For a proper balancing adjust the tension of the spring:
- rotate the spring anticlockwise to decrease the tension
- rotate the spring clockwise to increase the tension.

Move the boom manually to 30° position, as shows Picture 22.

Make sure the boom remains still keeping the position. If the boom moves to opening position, decrease the spring tension. If the boom moves to closing position, increase the spring tension.

3.6.7 Photocells RF40

The cabinet is provided with pre-drilled housings for RF40 photocell mounting, protected by plastic covers. Remove covers using a flathead screwdriver.

Use the big central hole to drive the power cable through. The remaining holes are supposed to fix the photocell's base (use 3,5x9,5 self-threading screws provided). Once the base is fixed complete with cover (use 3,5x9,5 self-threading screws provided) and screw. Put photocells at the most suitable height according to your needs. Refer to Chapter 3.7.4 Wiring diagram p. 12.

3.6.8 Led strip

The LED strip increases the visibility of the barrier during operation. Drive the LED strip through the proper compartment inside the rubber profile. LED lights have to be downward oriented, refer to Picture 25.
If the LED strip struggles when passing through the compartment, put a little oil to facilitate the insertion. Then drive the power wire through the bracket, before fitting the boom. Fix the wire exactly as shown in Picture 27, then drive it through one of the cabinet's holes, the most suitable one according to installation features and proceed to wiring (refer to Chapter 3.7). Fix the cap to the rubber profile using the provided 3,5x19 screw. (Picture 26)

ATTENTION: If for any reason the LED strip has been cut, put silicone on the cut side before fitting the cap to the rubber profile.

3.6.9 Boom accessories

If you plan to fit the boom with any accessory, do it before proceeding to programming.

3.6.10 Mirror barriers (TWINNING)

Mirror barriers installed on the same drive way (as shows the above picture) can work simultaneously if wired together on TWIN terminals. The master barrier will command the slave barrier; slave barrier may only stop if detecting an obstacle during operation. Any safety and command devices shall be wired to the master barrier only. As well the master barrier is the only one that shall perform pedestrian opening, terminal START2.

Master barrier settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.6 to 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Slave barrier settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.2 to 0</td>
<td>0</td>
</tr>
<tr>
<td>H.6 to 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Refer to Chapter 3.8.1.9 DAT + GND (TWIN), p. 25.

3.7 Wirings

3.7.1 Main power 230V

The main power terminal is located on the upper side of the cabinet, close to control unit.

ATTENTION: factory pre-wiring, do not make any alteration.

3.7.2 Back-up batteries

Use two 12V / 1,2Ah batteries wired in series; Wire cable + (red) to red faston Wire cable – (black) to black faston. Grey faston remains free.
3.7.3 Stand-alone antenna (optional)

The control unit is fitted with a Whip antenna. If you wish to connect an external stand-alone antenna, remove the Whip aerial and wire the core cable (RG58); wire the shield cable on the other terminal as shown in the picture.

3.7.4 Wiring diagram

(The below diagram is a mere overall view about all possible wirings)
3.8 Legenda of terminals

<table>
<thead>
<tr>
<th>START</th>
<th>STOP</th>
<th>STRT2</th>
<th>COM</th>
<th>SAFETY</th>
<th>BOOM</th>
<th>TWIN</th>
<th>AUX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

3.8.1 START – wired command contacts
(key switch, key pad, timer)

Any start command contact shall be wired on this terminal, refer to Chapter C.5 Inputs set up p. 18.
Any pulse below 10 seconds is considered a regular START command, including automatic closing mode (L.1 automatic closing); any pulse over 10 seconds activates the timer mode and the barrier will remain in opening position according to the timer settings.
Wire N.O. contacts between START (or START2) and COM.
Any additional contact shall be wired in parallel.

3.8.2 STOP – emergency push button or similar devices

Any stop command contact shall be wired on this terminal. Multiple stop contacts shall be wired in series.
Wire N.C. contacts between STOP and COM.
If N.C. contact opens the barrier stops. If no STOP contact is wired, deactivate parameter P.1 STOP contact set up p. 18, otherwise no operation will start.
Any single STOP pulse immediately stops the operation.

3.8.3 STRT2 (START2: pedestrian opening)

The operation logic is the same of START.
Just set the pedestrian automatic closing, parameter L.2 Pedestrian automatic closing p. 18.
In case of mirror barriers installation (TWINNING set up), STRT2 will open just the master barrier.

3.8.4 PH – Closing photocell (N.C. dry contact)

Any closing photocell and similar devices shall be wired on this terminal, N.C. contacts.
Wire the receiver’s N.C. contact between PH and GND.
Additional photocells shall be wired in series.
Power the receiver on +24 (and GND), while the transmitter on +TX (and GND).
Refer to chapter 3.7.4 Wiring diagram p. 12 to get the complete wiring view.

3.8.5 +24 (SAFETY)
Closing photocell (power)

This terminal permanently powers at 24Vdc, 0.5A all safety devices. On the contrary, +TX terminal cuts power during photocell test.

3.8.6 +TX - Closing photocell (cuts power during photocell test)

This terminal powers at 24Vdc, – 0.3A all safety devices, but unlike +24 (SAFETY) cuts the power during photocell test.

3.8.7 LD (Loop Detector)

This terminal can manage both N.O. and N.C. contacts; loop detector works as closing photocells do, but in addition can also command an opening start pulse.
Wire the loop detector between LD and GND, and activate parameter P.3 LD set up p. 19 choosing the desired function and contact.

3.8.8 +24, R, G and B (BOOM)
LED signalling strip

Wire the LED strip to BOOM terminal, according to colors: black wire to +24, red wire to R, yellow wire to G and white wire to B.
The LED strip lights up showing the different operation modes; parameter P.4 LED strip configuration p. 19, allows to set up the signalling mode.
This configuration has to be set when boom is in closing position.
+24Vdc, 0.5A voltage is permanent on terminal +24.
It is possible to keep the boom lit during night: fit a light sensor, N.O. dry contact and wire it in series to +24 terminal (BOOM).
Then activate parameter P.5 light sensor mode p. 19.
It is possible as well to wire the light sensor’s contact between START2 and COM, or between LD and GND; in this case LD and START2 loose their initial function.

3.8.9 DAT and GND (TWINNING)

These terminals are used to activate the TWINNING function in case of a mirror barrier installation.
Wire DAT to DAT and GND to GND of both barriers, then set up parameter H.6 Master/Slave mode p. 18.
If the distance between the two barriers is more than 14m, use a screened cable: shield to GND and core to DAT.

3.8.10 AUX – Relay output

This terminal AUX allows the connection of a relay (N.O. contact) that can feature several functions.
Refer to Chapter A.6 AUX configuration p. 17.
Contacts can max. bear 250V ac/dc, 10 A.
It’s a dry contact, therefore it cannot power direct any device. Use an external power supply, or in alternative+24V from +24 SAFETY terminal able to power up to 300 mA.
3.9 Quickstart guide

Once the installation is mechanically and electrically completed, close the cabinet door and proceed to the following steps:

- Boom programming: perform C.1 p. 17.
 IMPORTANT: the programming procedure has to be repeated every time anything on the boom changes: weight, length, balancing, limit switch, run.
- Adjust settings.
- Store remote controls if expected.
 Refer to parameter A.1 Remote control storage as START function or A.2 Remote control storage as START2 pedestrian function p. 16 - 17.
- Double check the overall operational status – safety devices particularly.

Refer to Chapter 4.1 Working cycle p. 14, to get a closer detailed view of the boom operation logic.
Refer to Chapter 5. Programming p. 15 for settings configuration.

3.10 Locking the upper top cover

After completing the whole barrier installation and regulation, close the cabinet door without locking. Proceed to wire the blinker integrated in the cover to the control unit. Fit the upper cover and secure it with screws M3, refer to Picture 28. Lock the cabinet door by key, in this way the embedded safety microswitch will activate. The microswitch allows to carry out maintenance in safety conditions, since it stops any possible commands from remote (additional information available at Chapter P.6 Door switch set up p. 19.

4. OPERATION

4.1 Working cycle

During normal operation the barrier could be in one of the following mode:

- STILL MODE: Just when the barrier is in STILL mode it is possible to program it or adjust settings. The blinker is OFF and the display is in stand-by “_ _ “.
- OPENING MODE: The blinker flashes slowly and the display shows “/ \” opening.
 If during opening the barrier detects an obstacle, the boom reverts to closing position, remains still for 10 seconds (the display shows count-down) and then starts to open again.
- AUTOMATIC CLOSING COUNTDOWN:
 When countdown begins the blinker starts flashing briefly for a few seconds switching then to fixed light. If a start command is sent during countdown, the automatic closing is suspended. Refer to Chapter C.5 Working logic, p. 18.
- CLOSING MODE: If during closing the barrier detects an obstacle or photocell’s beam is cut, the boom reverts to OPENING position.

4.1.1 LED strip signalling mode - legend

<table>
<thead>
<tr>
<th>Barrier’s status</th>
<th>Signalling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidentified position (no full duty cycle has been performed yet)</td>
<td>Red light ON, blinker may slowly flash. The boom might be in low position, refer to chapter P.4, p. 19.</td>
</tr>
<tr>
<td>Still mode, not in opening position</td>
<td>Red light ON, blinker may slowly flash. The boom might be in low position, refer to chapter P.4, p. 19.</td>
</tr>
<tr>
<td>During opening</td>
<td>Red light ON.</td>
</tr>
<tr>
<td>Opening position, NO automatic closing or automatic closing countdown over 5 seconds</td>
<td>Green light ON.</td>
</tr>
<tr>
<td>In opening position, automatic closing countdown below 5 seconds</td>
<td>Red light ON.</td>
</tr>
<tr>
<td>During closing</td>
<td>Red light flashing</td>
</tr>
</tbody>
</table>

4.1.2 Automatic closing after power cut

Once the power supply is restored, after 15 seconds the barrier starts closing, if all the following conditions have been fulfilled:

- Parameter H.4 Automatic closing after power cut p. 18 is activated.
- Parameter C.4 LH and RH boom configuration p. 18 is not set to position 2 (factory setting).
- No wired/radio command is sent, no key is pressed.

During the 15 seconds the system doubles check that all the a.m. tips have been respected. If this is the case, the blinker will flash shortly to confirm closing will start soon.
4.1.3 Programming keys

Pressing any key during operation the barrier stops. With an exception for key : if pressed during countdown the barrier starts immediately working again, refer to Chapter 4.1 Working cycle p. 14. When barrier is in still mode, the display may show “- -” flashing, or just “-” if energy save is on and in this circumstance it is possible to handle the following service keys and functions:

<table>
<thead>
<tr>
<th>Keys (OPERATION MODE)</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>START pulse</td>
</tr>
<tr>
<td>2</td>
<td>START2 pedestrian pulse</td>
</tr>
<tr>
<td>together with 1 (press 1 and while holding press 1)</td>
<td>Opening command</td>
</tr>
<tr>
<td>together with 2</td>
<td>Closing command</td>
</tr>
<tr>
<td>(hold it pressed for short seconds)</td>
<td>Programming menu: the display shows A.1</td>
</tr>
</tbody>
</table>

In programming mode the display alternately shows the outstanding parameter and its value. Ex.: parameter H.2 / value 1, the display reads first “H.2” and after “01.” In this circumstance it is possible to handle the following programming keys and functions:

<table>
<thead>
<tr>
<th>Keys (PROGRAMMING MODE)</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This key increases the value of the parameter.</td>
</tr>
<tr>
<td>2</td>
<td>This key decreases the value of the parameter till 0.</td>
</tr>
<tr>
<td>(hold it pressed for short seconds)</td>
<td>This key switches from menu to menu (ex. H.3 - J.1). From U.x menu the control unit returns back to A.1.</td>
</tr>
<tr>
<td>(hold it pressed for short seconds)</td>
<td>This key switches from parameter to parameter (ex. H.3 - H.4). From last parameter the control unit returns back to the first one (ex. H.6 - H.1).</td>
</tr>
<tr>
<td>together with 1</td>
<td>This key quits the programming and returns to operation mode.</td>
</tr>
</tbody>
</table>

5. PROGRAMMING

5.1 Settings’ configuration

Proceed to programming only when the barrier is in still mode (any key pressed during operation stops the barrier). Press key 1 and hold shortly (a quick pulse is insufficient): display reads “A.1.”

Press 1 as many times as finding the desired parameter expressed by an alphabetical letter (left side of the display). Then press 1 as many times as finding the figure corresponding to the desired parameter (right side of the display).

Ex.: if you wish to set parameter H.2, press 1 three times (scrolling through C.1, F.1 and H.1), then press 1 again to move to H.2.

Once the desired parameter is reached, use 1 and 2 to increase or decrease the value. Pay attention: when display reads the desired parameter, wait a little while to read the according value. The screen first reads the parameter and after its value. If you wish to move to another parameter, follow the procedure previously mentioned.

To quit the programming press 1 and 2 together. The control unit, however, automatically quits the programming after two minutes of inactivity.

Some parameters are merely functions and therefore are not matched to any value. These functions usually require a longer or shorter pressure of key 1 to confirm execution. Unlike other functions as A.1, A.2 and A.3 that do only require a radio signal.
5.2 Settings' list

Here below you will find a resume of all available parameters and functions. More details are found in Chapter 5.3 Settings' description p. 16.

<table>
<thead>
<tr>
<th>ID</th>
<th>DESCRIPTION</th>
<th>Default</th>
<th>LINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Store a remote control as “START” command</td>
<td></td>
<td>C.5</td>
</tr>
<tr>
<td>A.2</td>
<td>Store a remote control as START2 pedestrian command</td>
<td></td>
<td>C.5</td>
</tr>
<tr>
<td>A.3</td>
<td>Store a remote control as AUX / 2nd channel</td>
<td></td>
<td>A.6</td>
</tr>
<tr>
<td>A.4</td>
<td>Delete a single remote control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.5</td>
<td>Delete all remote controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.6</td>
<td>AUX / 2nd channel output configuration</td>
<td>1</td>
<td>A.3 U.4</td>
</tr>
<tr>
<td>C.1</td>
<td>Automatic programming</td>
<td></td>
<td>C.4</td>
</tr>
<tr>
<td>C.3</td>
<td>Reset (factory default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.4</td>
<td>Lh and RH boom configuration</td>
<td>2</td>
<td>C.1</td>
</tr>
<tr>
<td>C.5</td>
<td>Working logic configuration</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>F.1</td>
<td>Obstacle detection</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>H.1</td>
<td>Pre- blinking</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>H.2</td>
<td>Fixed-light blinker</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>H.3</td>
<td>“Follow me” closing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>H.4</td>
<td>Automatic closing after power cut</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H.6</td>
<td>TWINNING (master/slave barriers configuration)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>L.1</td>
<td>Automatic closing</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>L.2</td>
<td>Automatic closing pedestrian opening</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>P.1</td>
<td>STOP</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P.2</td>
<td>PH (closing photocell)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P.3</td>
<td>LD (loop detector)</td>
<td>0</td>
<td>P.5</td>
</tr>
<tr>
<td>P.4</td>
<td>Boom light mode when in closing position (optional led strip)</td>
<td>1</td>
<td>P.5</td>
</tr>
<tr>
<td>P.5</td>
<td>Light sensor</td>
<td>0</td>
<td>P.4</td>
</tr>
<tr>
<td>P.6</td>
<td>Cabinet safety switch</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>U.1</td>
<td>Overall cycles performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.2</td>
<td>Cycles performed since last maintenance</td>
<td></td>
<td>U.4</td>
</tr>
<tr>
<td>U.3</td>
<td>Maintenance countdown</td>
<td>1</td>
<td>U.4</td>
</tr>
<tr>
<td>U.4</td>
<td>Maintenance recall</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>U.5</td>
<td>Installation date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.6</td>
<td>Trouble shooting and “dead man” functions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3 Setting's description

5.3.1 A. RADIO

This menu includes procedures about how to store radio devices, remote controls mainly. Every remote control stored is automatically identified by a progressive number: if by accident a remote control is lost it can be deleted from the control unit memory. It is possible to store up to 96 different users; when a remote control is deleted its radio position still remains available for a new remote control storage.

Any key of the remote control can be set up as follows:
- START command, corresponding to a wired contact to START terminal
- START2 pedestrian command, corresponding to a wired contact to START2 (STRT2) terminal
- AUX feature, known as well as 2nd radio channel, matchable to AUX output.

Choose the function you need before starting storing any key of the remote control.
There are three different settings available (A.1, A.2 and A.3) corresponding to different functions.

A.1 Store a remote control as START command

Set A.1. Press the remote control (the display reads “Y-”) together with to store. If successful the display will show the radio position matched to the remote control. In case of an already existing remote control, the display will only show its radio position (01, 02, …). If storage capacity is full the display will reads “FF”.

It is important to press the remote control's key and together, otherwise the storage will not be successful and the control unit might save any incoming undesired radio signal. If you have additional remote controls to store, repeat the same procedure.
A.2 Store a remote control as START2 pedestrian command
Set A.2 and repeat the same procedure here above.
For more details refer to Chapter 3.8.1.3 START2 (START2) p. 13.

A.3 Store a remote control as AUX/2nd radio channel
Set A.3 and repeat the same procedure as per A.1 here above.
At the same time set parameter A.6 according to the desired configuration or in alternative use a MRX-01 optional interface card module duly set up.

A.4 Delete a single remote control
Every remote control stored is matched to a radio position identified by a number.
Set A.4, press or to find the remote control you need to delete then press both keys together and hold until the display flashes “YY”. If there is just remote control stored, the display will show just that one.

A.5 Delete all remote controls
Set A.5, the display will show “-“ press to confirm you wish to delete all remote controls stored and hold during 5 seconds; if all remote controls have been successfully deleted, the display flashes “YY”.

A.6 AUX /2nd radio channel output configuration
The AUX is a multifunction output: it can be used as maintenance recall, refer to chapter (U.4 maintenance recall p. 19). Or it can set up the following modes/functions:

<table>
<thead>
<tr>
<th></th>
<th>AUX - Functions/Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AUX output is OFF. AUX output is ON if U.4 maintenance recall is activated</td>
</tr>
<tr>
<td>1 (default)</td>
<td>2nd channel / MONOSTABLE: the output is activated by a remote control stored in A.3 AUX. The contact closes when giving and holding a start pulse with the remote control. The contact opens just when the remote control's key is released.</td>
</tr>
<tr>
<td>2</td>
<td>2nd channel / BISTABLE: the output is activated by a remote control stored in A.3 AUX. The contact closes or opens when giving a start pulse with the remote control.</td>
</tr>
<tr>
<td>3</td>
<td>SIGNALLING BOOM IN VERTICAL POSITION: the output is activated when the boom is in vertical position. If the control unit came about to be powered it may not detect the boom position, therefore the signalling light may remain switched off.</td>
</tr>
<tr>
<td>4</td>
<td>SIGNALLING BOOM IN HORIZONTAL POSITION: the output is activated when the boom is in horizontal position. If the control unit came about to be powered it may not detect the boom position, therefore the signalling light may remain switched off.</td>
</tr>
<tr>
<td>5</td>
<td>COURTESY LIGHT (30°): the output is activated when the contact closes and remains closed during the whole working cycle. The contact opens after 30 seconds after working cycle is completed.</td>
</tr>
<tr>
<td>6</td>
<td>COURTESY LIGHT (60°): the output is activated when the contact closes and remains closed during the whole working cycle. The contact opens after 60 seconds after working cycle is completed.</td>
</tr>
<tr>
<td>7</td>
<td>COURTESY LIGHT (90°): the output is activated when the contact closes and remains closed during the whole working cycle. The contact opens after 90 seconds after working cycle is completed.</td>
</tr>
</tbody>
</table>

Step (01), boom slowly opens until detecting the mechanical limit switch.
If the boom works to the opposite direction, stop the operation and properly set up C.4. Then repeat C.1.

Step (02), boom slowly lowers down until detecting the closing position; the following steps are meant to set speed, torque and double check all settings.
The automatic learning is successfully completed when display shows “YY” flashing.

C.3 Reset (factory default)
Set C.3, press holding during 5 seconds to confirm reset (return to factory settings).
Parameters U.5, U1 and U.2 CANNOT be reset and no remote control previously stored can be deleted.
Now repeat C.1 procedure.
Reset is successfully completed when display shows “YY” flashing.
C.4 LH and RH boom configuration
This parameter shows the boom opening direction or the boom position.
Looking from inside the property (cabinet's door inside the property) and boom in horizontal position, values are intended as follows:

<table>
<thead>
<tr>
<th>C.4</th>
<th>Boom configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RH barrier</td>
</tr>
<tr>
<td>1</td>
<td>LH barrier</td>
</tr>
<tr>
<td>2 (default)</td>
<td>No configuration is set</td>
</tr>
</tbody>
</table>

C.5 Working logic configuration
It is possible to set 3 different working logics:

<table>
<thead>
<tr>
<th>C.5</th>
<th>Working logic</th>
</tr>
</thead>
</table>
| 0 (default) | SEQUENTIAL
Every START command stops or reverted the working cycle according to the sequence: OPEN – STOP – CLOSE – OPEN ... |
| 1 | PRIORITY TO OPENING
Every START command gives priority to opening; boom automatically closes according to the time set (refer to L.1 Automatic closing) |
| 2 | STEP BY STEP
START terminal commands the opening; START2 terminal commands the closing.
Automatic closing activates if configurated, refer to L.1 Automatic closing and L.2 Automatic closing pedestrian opening |

5.3.3 F. Torque

F.1 Obstacle detection
Obstacle detection is a safety feature that complies with outstanding regulations and makes the barrier area more protected and safer. If during operation any speed alteration or sudden stress are detected, the barrier stops in order to avoid or limit damages to persons or objects. This feature can be adjusted on different sensitivity levels: 0 = detection is OFF while 10 = maximum detection sensitivity; factory value (default) is set to 5.

5.3.4 H. SPECIAL FUNCTIONS

H.1 Pre-blinking in closing
Pre-blinking feature warns the user that closing will start soon. Receiving a start command the blinker starts flashing during a few seconds before boom starts closing.
Pre-blinking time is adjustable, from 0 to 8 seconds.

H.2 Fixed-light blinker
If you wish to switch the blinker to fixed-light mode, set H.2 to 1.

H.3 “Follow me” closing
This function allows the barrier to immediately close after cutting the photocell beam.

H.4 Automatic closing after power cut
If you set H.4 to 1, in case of power cut the barrier will close 15 seconds after power is restored.
This function can be activated only if conditions included in chapter 4.1.2 Automatic closing after power cut, p. 14 are applied. The factory setting is 1 (default).

H.6 Master/slave barrier configuration
This parameter allows to set up TWNING feature in case of a double barrier installation (mirror barriers).

<table>
<thead>
<tr>
<th>H.6</th>
<th>Master/slave (TWNING)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>TWNING OFF</td>
</tr>
<tr>
<td>1</td>
<td>Set 1 to configure the master barrier</td>
</tr>
<tr>
<td>2</td>
<td>Set 2 to configure the slave barrier</td>
</tr>
</tbody>
</table>

5.3.5 L. Working times

L.1 Automatic closing
This parameter sets the automatic closing time, adjustable from 0 = automatic closing OFF to 99 seconds.

L.2 Automatic closing (pedestrian opening)
This parameter sets the automatic closing time for pedestrian opening, adjustable from 0 = automatic closing OFF to 99 seconds. L.1 and L.2 are totally independent one to the other: they can be set up in different ways with different times, as well L.1 can be ON while L.2 can be switched OFF, and viceversa.

5.3.6 P. SAFETY

P.1 STOP
The factory setting is 0 = output OFF.
If you wish to connect a stop device, set P.1 to 1 position.

P.2 (closing photocell)
When P.2 is set to 0 = output OFF
It is highly recommended to set P.2 to:
1 = closing photocell ON (photocell test is OFF)
or 2 = closing photocell ON (photocell test is ON)
The photocell test is a safety provision that helps detecting a faulty or unsafety photocell. The test works as follows: before closing, the control unit switches the power off from TX photocell terminal, in this way the photocell has no other option but to open the contact. If the contact doesn't open in short time, it means the photocell is faulty and the barrier remains still.
P3 LD loop detector
P3 allows to fit to LD terminal a vehicle detector (loop detector) that works exactly as a safety device, like closing photocell. In addition it can command a START pulse: when the vehicle approaches the barrier, a START command is given and the barrier opens.

Settings available:

<table>
<thead>
<tr>
<th>P3</th>
<th>LD output / features and contacts (N.O./N.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(default) The contact is OFF.</td>
</tr>
<tr>
<td>1</td>
<td>N.O. (normally opened) START command. The closed contact makes the barrier opening.</td>
</tr>
<tr>
<td>2</td>
<td>N.O. SAFETY mode The closed contact makes the barrier reverting exactly as a closing photocell.</td>
</tr>
<tr>
<td>3</td>
<td>N.C. (normally closed) START command See setting 1 above.</td>
</tr>
<tr>
<td>4</td>
<td>N.C. (normally closed) SAFETY mode See setting 2 above</td>
</tr>
</tbody>
</table>

P4 LED signalling strip (optional)
Boom can be fitted with a RGB led strip that makes the operation more visible.
The LED strip can be adjusted in 4 different signalling modes when boom is in closing position.

Refer to be below table:

<table>
<thead>
<tr>
<th>P4</th>
<th>Signalling mode when boom in closing position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>Lit (red light); flashing if battery powered</td>
</tr>
<tr>
<td>2</td>
<td>Lit (red light)</td>
</tr>
<tr>
<td>3</td>
<td>Flashing (red light)</td>
</tr>
</tbody>
</table>

P5 Light sensor
It is possible to wire a light sensor or daily/weekly timer to switch the LED signalling strip OFF during day hours. There are two possible configurations:

- Wiring the N.O. contacts of the sensor/timer in series to COMMON (terminal BOOM+24)
- Wiring the N.O. contacts of the sensor/timer between GND and STRT2 or LD, setting P5 accordingly; in this case the wired terminal looses its original function.

<table>
<thead>
<tr>
<th>P5</th>
<th>Light sensor possible configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(default) No light sensor is wired to STRT2 or LD.</td>
</tr>
<tr>
<td>1</td>
<td>Light sensor is wired between STRT2 and COM. START2 no longer works as pedestrian contact.</td>
</tr>
<tr>
<td>2</td>
<td>Light sensor is wired between LD and GND. LD no longer works as Loop detector.</td>
</tr>
</tbody>
</table>

P6 Cabinet’s safety switch
The barrier may develop extremely dangerous circumstances during operation. That’s why if cabinet is opened the barrier immediately stops working (just figure out if accidentally a radio start command is given, how dangerous it could be). However barrier can be managed in “dead man” mode using on board keys.
P6 safety function may be switched OFF setting P6 to 0 position; by default P6 is ON (P6=1).

5.3.7 U. Maintenance

U.1 Overall cycles performed
This feature allows to display the overall cycles performed.
No possibility of reset.
Cycles are displayed 2 by 2 figures:
Ex.: if the barrier totally performed 823.605 cycles, the screen will read:

00. 82 36 0.5.

If you wish to scroll figures just press key 🅱️.

U.2 Cycles performed since last maintenance service
This feature allows to display the overall cycles performed since last maintenance service.
Cycles can be reset when a maintenance service has been carried out (if U.3 is updated and set up).
If you wish to reset press 🅱️ and 🅲️ together holding for 3 seconds: display will flash “.yy” to confirm reset successfully completed.

U.3 Maintenance countdown
This feature allows to set the number of cycles till next maintenance service (starting from a minimum of 1000 cycles and so on).
U.3 will accordingly and automatically update U.1 and U.2 if activated, at every closing operation.
It is also possible to warn the end user that maintenance service is needed.
To set this function, set parameter U.4.

U.4 Maintenance recall
As previously explained in parameter U.3, it is possible to set a visible flashing “maintenance recall”.
Refer to the below table to set the desired recall configuration:

<table>
<thead>
<tr>
<th>U.4</th>
<th>Maintenance recall – signalling configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(default) OFF – factory setting No maintenance recall has been activated.</td>
</tr>
<tr>
<td>1</td>
<td>SPECIAL FLASHING DURING AUTOMATIC CLOSING TIME When boom in vertical position, the flashing light on the cabinet permanently flashes. To activate this mode the automatic closing time shall be set no less than a couple of seconds, otherwise signalling will not be sufficiently visible.</td>
</tr>
<tr>
<td>2</td>
<td>SPECIAL FLASHING DURING OPENING When boom is opening, the flashing light on the cabinet permanently flashes.</td>
</tr>
<tr>
<td>3</td>
<td>AUX OUTPUT AUX output activates (the contact closes) when maintenance service is needed.</td>
</tr>
</tbody>
</table>
U.5 Installation date
This feature allows to load the installation date.
The display will show the installation date in 3 different steps: the first figure shown is the day (from 1 to 31); pressing the month shows up (from 1 to 12); pressing again the year shows up with two dots. Pressing the sequence START.
EX.: if your installation date is 14-03-2019 the sequence displayed will be:

If you wish to set installation date, press together and holding during 4 seconds; screen will read “d”, use or to load the day, from 1 to 31; save pressing .
Screen will read “n”, use or to load the month, from 1 to 12; save pressing .
Screen will read “Y”, use or to load the year. Save pressing . Installation date loading completed.

U.6 Trouble shooting and “dead man” functions
Set U.6 and press to confirm.
This feature allows to display the status of all inputs and at the same time allows to command direct the boom in “dead man” mode (key permanently pressed).
Press (and hold) to lift the boom and to lower it. Release the key to stop the boom.

Attention: during all these operations, safety devices are not working, be careful.
The screen displays the status of every single input, everyone identified by a symbol.
If the input is “active” the according symbol will be lit.

START, STRT2 (LH symbol), when lit the input is active; Radio dot lights up when receiving a radio signal, saved or unknown.

PH, LD (RH symbol), when lit the input is not active (safety contact impedes the operation).
CABINET, when lit the cabinet’s door is not closed.

If one of the P. settings is OFF (Chapter 5.3.6 SAFETY p. 18), the screen will not show any status (symbol permanently switched off).

The red dot on the right remains permanently lit to confirm programming is ON.
To quit press and together.

6. DISPLAY
The display shows the barrier status.
If no key is pressed, after 8 hours the display switches off; shortly press any key to light the display up.

As soon as control unit is powered, the display reads “8.8.” (all segments are lit so as to detect a possible fault).
After that the display reads firmware version (ex. “1.0.” or “2.3” and similars).
If control unit is brand new and no programming has been carried out yet, the display reads “EE” for a half second.

As last step, control unit goes to STAND-BY mode and display reads “--” flashing.
The remaining messages are listed in the below table.

6.1 Messages
During normal operation messages may show up. Refer to the below table indicating possible messages and according meaning:

<table>
<thead>
<tr>
<th>Messages</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical segments that move from center outwards</td>
<td>The barrier is opening</td>
</tr>
<tr>
<td>Vertical segments that move from center inwards</td>
<td>The barrier is closing</td>
</tr>
<tr>
<td>-S (start)</td>
<td>Receiving a START command</td>
</tr>
<tr>
<td>-P (start2 / parziale)</td>
<td>Receiving a START2 command (pedestrian)</td>
</tr>
<tr>
<td>-H (halt / stop)</td>
<td>Receiving a STOP pulse</td>
</tr>
<tr>
<td>CO (case open)</td>
<td>Cabinet’s door opened</td>
</tr>
<tr>
<td>PC (photo close)</td>
<td>Closing photocell is working</td>
</tr>
<tr>
<td>Ld (loop detector)</td>
<td>Loop detector LD (3.8.1.7 LD loop detector p. 13) is detecting a vehicle</td>
</tr>
<tr>
<td>Pair of figures (ex. 02)</td>
<td>Receiving a radio signal by a saved remote control (remote control saved on radio position 2). Usually S or P show up to confirm which kind of remote control has been used.</td>
</tr>
<tr>
<td>-C</td>
<td>A timer has been wired to START or START2; automatic closing is stopped</td>
</tr>
<tr>
<td>-L</td>
<td>Permanent LD signal (3.8.1.7 LD loop detector p. 13) that stops automatic closing</td>
</tr>
</tbody>
</table>

6.2 Faults
The display shows faults and anomalies that may stop the barrier operation: the fault message is coded with two “dots” matched to figures or letters.
Refer to the below table:

<table>
<thead>
<tr>
<th>DISPLAY message</th>
<th>FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>oE (encoder)</td>
<td>Obstacle detected due to a sudden slow run of the barrier.</td>
</tr>
<tr>
<td>oA (amperometric)</td>
<td>Obstacle detected due to a sudden motor absorption increase</td>
</tr>
<tr>
<td>o5 (standstill)</td>
<td>Obstacle detected due to motor standstill</td>
</tr>
<tr>
<td>oC (voltage overcharge)</td>
<td>Obstacle detected due to motor voltage overcharge (max. limit rate)</td>
</tr>
<tr>
<td>Ld (loop detector)</td>
<td>Loop detector operating</td>
</tr>
<tr>
<td>PC (photo close)</td>
<td>Closing photocell operating</td>
</tr>
<tr>
<td>AH (abort halt/stop)</td>
<td>STOP pulse</td>
</tr>
<tr>
<td>AC (abort cabinet)</td>
<td>Cabinet’s door is opened</td>
</tr>
<tr>
<td>AU (abort user)</td>
<td>Operation interrupted using onboard keys</td>
</tr>
<tr>
<td>FC (photocell test failed)</td>
<td>Photocell test detected a faulty photocell</td>
</tr>
<tr>
<td>EC (overcurrent)</td>
<td>Motor absorbs too much current</td>
</tr>
<tr>
<td>EY (overheating)</td>
<td>Component overheating</td>
</tr>
<tr>
<td>EF (start fail)</td>
<td>Barrier fails to start</td>
</tr>
<tr>
<td>EU (timeout)</td>
<td>Time exceeded</td>
</tr>
<tr>
<td>EN (encoder wiring)</td>
<td>Motor and/or encoder are not properly wired</td>
</tr>
</tbody>
</table>
7. MAINTENANCE

ATTENTION! - Maintenance must be performed by qualified personnel in compliance with outstanding safety regulations of current legislation.

Maintenance service has to be regular every 6 months.

Before proceeding double check the following conditions:

• Switch the power OFF.
• Check the good condition of every component.
• Check all screws are properly tight (especially the equalizer lever and boom bracket).
• Check spring turns are regularly distanced without deformation.
• Check the correct position of limit switches inside the cabinet.
• Release and check the correct boom balancing, and possible friction during manual opening and closing.
• If boom is not properly balanced as per balancing instructions, put the boom to vertical position and adjust the spring accordingly. Then double check the balancing again.
• Lock the barrier and proceed to general test.

7.1 Manual operation check

• Check the manual release system: put the boom in closing position, unlock and test manual operation. Manual operation has to be easy and effortless.
• Boom has to open without friction nor interruption.
• Handle rotation has to be effortless without frictions.

Record every single intervention in the space provided, chapter 8.3 Maintenance, service and repairings must be documented and the owner must keep the related documents.

8. END USER’S TIPS

Dear user, it is highly recommended to read the following pages because they may contain essential information for the safety of people and things, and in compliance with applicable laws. Store these pages in a safe place for future reference.

8.1 Warnings

Keep the system away from children under 8.

Children and People with reduced physical, sensory, mental or limited experience and / or knowledge can use automation only if they are provided with supervision or specific instructions regarding the safe use of the same.

The use of this product for purposes other than those described above and installation executed in a manner other than as instructed in this technical manual are prohibited.

Do not, for any reason, access the internal parts of the automation: they are dangerous and there are no components that can be repaired or replaced by unqualified personnel.

Use remote controls or other control devices only when the automation is visible and there are no dangerous situations.

Do not allow children to play near the automation area.

8.2 Boom manual release

To unlock the automation, use the lock located on the right side of the cabinet.

Turn the supplied key anticlockwise by 180° to release the handle.

Turn the handle fully clockwise to unlock the automation.

These operations must be carried out in the event of power cut or operating anomalies.

ATTENTION: HOLD THE BOOM WITH YOUR HAND, IT COULD ACCIDENTALLY MOVE.
To lock the automation again, turn the handle anticlockwise: the two symbols of the locked padlock have to be realigned. Then turn the key of the lock clockwise to lock the rotation of the handle, and remove the key from the barrel.

ATTENTION: put the boom in the same previous position.
In case of doubt, turn the power off, wait a few seconds and turn the power on again.

8.3 Maintenance

In order to preserve the proper performance and safety of the barrier over time, it is highly recommended to schedule a regular maintenance plan with your installer and report any uncommon behaviors that may require inspection.

In case of malfunctions, it is wise to contact the installer who installed the barrier, rather than others. End user may just keep clean photocells and the barrier on a regular basis.

Regular maintenance service and repairings must be documented by the installer while the end user shall keep them safe and available for future reference.

Update the below spaces every time a new intervention is carried out:

<table>
<thead>
<tr>
<th>DATE</th>
<th>NOTES</th>
<th>INSTALLER’S SIGNATURE</th>
<th>END USER’S SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.4 Disposal

8.4.1 Barrier disposal
Barrier’s components, remote controls and similar devices included, have to be disposed according to the current regulation, since their content may be harmful for the environment.

Most of the materials used are similar to municipal solid waste. They can be recycled through separate collection and disposal in authorized centers.

Other components (electronic boards, batteries, etc.) may instead contain polluting substances. That’s why they must be removed and delivered to authorized companies for collection and disposal.

Check the outstanding local disposal regulations.

8.4.2 Packaging disposal
Packaging components (cardboard, plastics, etc.) are similar to solid urban waste and can be easily disposed, simply carrying out separate collection for recycling.

Check the outstanding local disposal regulations.

DO NOT DISPERSE IN THE ENVIRONMENT!

COMPLIANCE DECLARATION

Manufacturer: PROTECO S.r.l.
Address: Via Neive, 77 - 12050 CASTAGNITO (CN) - ITALY

declares that

The product type: S-PARK road barrier automation
Models: S-PARK 4 - S-PARK 6

Is built to be integrated into a machine or to be assembled with other machinery to create a machine under provisions of 2006/42/EC Machinery Directive.

It complies with the essential requirements of EEC Directives:
- 2014/30/UE (EMC)
- 2014/35/UE (LVD)
- 2014/53/UE (RED)
- 2011/65/CE (RoHS2)

The product also complies with EN 60335-1 and EN 60335-2-103 standards.

The manufacturer declares that the start-up of the machinery is not permitted unless the machine, in which the product is incorporated or of which is becoming a component, has been identified and declared as conformed to 2006/42/EC Machinery Directive.

Castagnito, 22 Luglio 2020

Marco Gallo
Amministrazione Delegato

Proteco